Complex Embeddings for Simple Link Prediction
نویسندگان
چکیده
In statistical relational learning, the link prediction problem is key to automatically understand the structure of large knowledge bases. As in previous studies, we propose to solve this problem through latent factorization. However, here we make use of complex valued embeddings. The composition of complex embeddings can handle a large variety of binary relations, among them symmetric and antisymmetric relations. Compared to state-of-the-art models such as Neural Tensor Network and Holographic Embeddings, our approach based on complex embeddings is arguably simpler, as it only uses the Hermitian dot product, the complex counterpart of the standard dot product between real vectors. Our approach is scalable to large datasets as it remains linear in both space and time, while consistently outperforming alternative approaches on standard link prediction benchmarks.1
منابع مشابه
SimplE Embedding for Link Prediction in Knowledge Graphs
The aim of knowledge graphs is to gather knowledge about the world and provide a structured representation of this knowledge. Current knowledge graphs are far from complete. To address the incompleteness of the knowledge graphs, link prediction approaches have been developed which make probabilistic predictions about new links in a knowledge graph given the existing links. Tensor factorization ...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملKnowledge Graph Completion via Complex Tensor Factorization
In statistical relational learning, knowledge graph completion deals with automatically understanding the structure of large knowledge graphs—labeled directed graphs— and predicting missing relationships—labeled edges. State-of-the-art embedding models propose different trade-offs between modeling expressiveness, and time and space complexity. We reconcile both expressiveness and complexity thr...
متن کاملTorusE: Knowledge Graph Embedding on a Lie Group
Knowledge graphs are useful for many artificial intelligence (AI) tasks. However, knowledge graphs often have missing facts. To populate the graphs, knowledge graph embedding models have been developed. Knowledge graph embedding models map entities and relations in a knowledge graph to a vector space and predict unknown triples by scoring candidate triples. TransE is the first translation-based...
متن کاملSemi-supervised Graph Embedding Approach to Dynamic Link Prediction
We propose a simple discrete time semi–supervised graph embedding approach to link prediction in dynamic networks. The learned embedding reflects information from both the temporal and cross–sectional network structures, which is performed by defining the loss function as a weighted sum of the supervised loss from past dynamics and the unsupervised loss of predicting the neighborhood context in...
متن کامل